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In L1.21, the problem of hypersonic flow past a cone at an angle of 
attack was solved by expanding the solution in powers of E = (y - ll/ 
(y + 1) and u = sin a/sin 7, where y is the ratio of specific heats, -r 
is the half vertex angle of the cone and a is the angle of attack; the 
second approximation was obtained. However, the solution so obtained 
possesses a logarithmic singularity on the surface of the cone, which 
indicates the invalidity of the solution near this surface. The correc- 
tion of the first order approximation in the “vorticity layer” was giW% 

by Cheng El]. 

Below we shall present a solution of the problem by SUCCSSSiVe 

approximations, which permits a uniform approximation to the exact solu- 
tion in the entire region between the shock surface and the cone sur- 
face. including the “vorticity layer”. The solution obtained is accurate 
up to the second order. It is compared with the results of [l, 21. 

The inviscid hypersonic flow past conical bodies was studied by Gonor 
L3.41, who sought solutions as power series in E = (y - l)/(y + 1) and 

obtained the zeroth order approximation. 

However. it is possible to show that the first approximation found 
by the method of small parameters has a logarithmic singularity on the 
cone surface. This indicates that this method is inapplicable near the 
cone surface (see also [51 1. 

Below, we shall apply the method of Poincar&Lighthill-Kuo (PLK) to 
this problem. For a circular cone at an arbitrary angle of attack, we 
obtain the zeroth order approximation, valid everywhere between the 
shock surface and the cone surface. It will be shown that outside the 
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Hypersonic flow past a circular cone 1423 

vorticity layer, the solution passes over to the solution of Gonor. 

1. We consider the uniform flow of a gas past a circular cone of 

half vertex angle T at an arbitrary angle of attack a; we choose 

spherical coordinates r, 6, and o with the axis coinciding with that of 

u+ 
tL=-, 

%3 

pzEF, 
co 

the cone (Fig. ). 

We follow the notation of [d. We denote by 

u+, v+ and w+ the components of the velocity 

vector in the r, 6, and o directions respec- 

tively, and by p+ and p+ the pressure and den- 

sity respectively. 

We now introduce the dimensionless variables 

(1.1) 
11+ *+ 

v= eu,sin z ’ w= urn sin a 

P+ sin 6 - sin Z 

p = p,u,2sin2z ’ 0= e sin Z - 

Then the equations of momentum, continuity, and energy become [lj 

L Iva$- u-E-2- 
1+ &0 ao 1 u = sin2 Z [e2 v2 + a2w2] 

aP W2 
ae = a2p 1 + Ee 

- w 
[ 

v&+0 
r(l~ee)&+$]U 

ap 
c 
Iv a + 6 

80 
+&) + q w = - -j-& r& + am] (1.2) 

2 Y+ efv pu + 1 ; [(I + &W PVI + c-r $PW) = 0 

Here 

Z = cos 6 = [ 1 - sin2 z (1 f Ee)q”* 

On the cone surface, we have the kinematic boundary condition 

v=O for 8=0 

On the shock surface 8 = 8+(o), the conservation of mass, momentum 

and energy and the continuity of the tangential velocity component have 

the following form [lj: 
I [pv - lo sin 0 + (Z -I- Ee+) cos a] = 08 [pw - E cos 01 

{Z2 + s202] (p - ke) = [Z (1 + e0+) cos a - 12a sin CII + UE@ cos 01~ - EP [Iu--cT~~w]~ 

[I2 $- E2@](p/P-k) (I + E) $m E2 [Zv - 00 WI2 = 

= [I (1 + Eef) cos a - Z2 u sin 0 +- ue@ cos 01~ 
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Ia (w - cos 0) -+ E@ [ev - Ia sin 0 + (1 + e@+) cos u] = 0 

u - Z cos a = sin2 Z (1 + Ee+) 13 sin 0 (1.3) 

Here 

k= T +- 1 = const, o 0 += de+(o) 
y(y-- 1)Mm2 sin2 z do’ 

@ = @of 
I + ee+ 

The quantity k is considered bounded. The Bernoulli integral assumes 
the form 

(p / p - k) (1 + E) sin2 z + u2 f sin2 < (Ed v2 j- &I~) = 1 (1.4) 

2. Cheng [d sought the solution in the form of a power series in E 
and a; for example, the pressure p is written as 

P= Poo + PIO” + Pm~+P,oE2+P,,E~ + Pozu2+ . . . , Pij = Pij (0, 0) (2.1) 

and the function 8+(o), defining the position of the shock wave, as 

8+ (0) = ooo -k olo E f @,I0 + 020&2 $- &EO 6 && + . . ., oi; = oij (wf 

When the solution is given in this form, In 8 will appear in the 
third approximation in the expression for S = pp’y, so that the third 
order solution breaks down at the cone surface (8 = 0), indicating that 
expansion (2.1) is not valid near the cone surface. 

Cheng made a correction in the first order approximation; for S it 
is c21 

S = 1 + k + E [k + 2 (1 + k) In (1 + k)l + 20 cm z (1 - Co2)/ (1 + brz) (2.2) 

(50 = e 0s (1Sh’) set ‘c m (y2 o + yan) 

From (2.2)) it follows that the solution depends on E and u in such 
a way that the power series in E and 0 obtained do not converge uni- 
formly in the region between the shock and cone surfaces. 

3. For the normal and azimuthal velocity components, we introduce 
the approximate quantities vt and IV’, such that 

U - v+ < 0 (e’+, w - w+ < 0 (8”“) as 

We introduce a function 5, satisfying the equation 

e--*0 (3.1) 

(3.2) 
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and boundary conditions 

c=-Gnu, for O=liz(l+k) 

(The meaning of the boundary condition will become clear later.) The be- 
havior of a line 5 = const is that of a streamline. It also has a source 
at the point 8 = 0, o = l/2*. and the cone surface is the line 5 = 1, 
which we assume to be independent of 8 and 5; the equation for S = pp+ 
we shall write in the form 

g+CT- wv+cosz-lu+v(1+Ee)z as ag o 

--_.= 

(1 + Ee) vu+ z cos IT ag ao (3.3) 

4. Let us consider the system of equations, consisting of the second, 
third and fourth equations of (1.2), the Bernoulli integral (1.4) and 
equation (3.3) with boundary conditions (1.3). S may be written as 

s = s,, j- &Sol+ us,, + EZS,” + FUS11 + a?Yo, + . . ., sij = sij (0, <; E, U) -= 0 (I) 

We introduce the expansion 

z = zoo + ZIOE + &B + &,E2 + &,&U + Z,,U’ + . . ., zij= Zij(e, 0; E, U) = o(i) (4.1) 

in which form we shall assume the solution p. p, a, v, w and also the 
function 8+(o) defining the shock position. 

5. Integrating the continuity equation, and considering the bounded- 
ness of the desired quantities in the region between the cone surface 
and the shock surface, we see that t, = O(8) as 8 - 0. Then this property 
must also be possessed by vi j. 

Ue shall assume that ag/& exists everywhere and is bounded outside 
some neighborhood of the point (8 = 0, o = l/210. In what follows, the 
first and second approximations in the examples satisfy these assump- 
t ions. 

We introduce the function <,+l, satisfying the equation 

n 

cos z (2 v.t $ Of 
13 ) + uij siu3 .) at; _. 

(5.1) 
i+j=o 

23gE+u(n-g 
i+j=o 

and boundary condition 

6 . n+l = - Sill 0 fore = l/z (1 _t 1:) 

It will be shown below that woo 
t- - 0. We estimate the difference 

R = 5 - 5,t1; it satisfies the equation 
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aR 
a3 + ’ 

W+ aR -= 
V+ cos z ati 

ac n+1 
_ u n+1 U-b 

cos z aa ( lJ3 I”.? J gj _ w+ 
13 

i+j=l 

i vi; d .d) (vf i vi; Ei q-’ 
i+j=o i+j=o 

and the boundary condition 

K = 0 for 6 = I/? (1 + k) 

Writing the characteristic equation and integrating it, we have 

e 

R= 
s 

a0 [(F + .)n+21 a5n+l &j 
e cos z au 

'/*(l+k) 

The integral is taken along the lines 5 = const. It will be shown 

below that a<I/& and a<,/& have order eEa as 8 - 0 outside some 

neighborhood of the singular point; this is also obvious for higher 

approximations. Then for R, we have everywhere the estimate 
R = O[(e + D)~“] (R = 0 for 6 = 0). 

From this, it follows that to get a solution up to the (n + 1)st 

order quantities, it suffices to know <,+I, since See = const and does 

not depend on 5. 

6. Substituting the expansion of type (4.1) into the system of equa- 

tions and the boundary conditions indicated in Section 4, and collect- 

ing terms with the same powers in E and o, we obtain equations for the 

coefficients of the desired quantities. 

Since u = O(8) as 9 - 0, and the derivative a</& and I are bounded, 

then considering (3.1). we have the following estimate: 

as / ae = 0 (V-l) (Q >, ‘is) (6.1) 

From (6.1) it follows that the solution to equation (3.3) does not 

have a logarithmic singularity. The equations for the remaining quanti- 

ties are such that if no logarithmic singularities occur in the already 

known approximations, then they will not occur in the solutions of these 

equations. 

7. We give the values of the coefficients in the zeroth approxima- 

tion for the dimensionless quantities 

PO0 = 1, POO = (1 + W, ZLOO = cos t (7.1) 

voo = - 26, woo = (26)“Z (1 + k)+ coso, (A,, = ‘1% (1 + k) 
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IL10 = - 1/2 (1 + k) sin z tan z, UOl = - 5 sin% 

v,,=e(1+k)tan2~-e2~~~--)-4/3e~(1+k)-' 

(7.2) 
e 

vol = 2 ( f (ho) dt -1: 

28 

( - Ifk 1 

% (1 + k) sin 0 _ 4 cos Z O 5 

3 cos z l+k 
0 

wlo = coso k (1 + k) +(&-y[2(l; k) -;(l + k) - ‘qm’r]+ 

+(-E)“[qL ,z~-~_(l + k)]-(~~~}-s~C~(~)‘“~ 
‘/* (1+x) 

_coszcoso + ( sin2+- 2 cos z 1 + k cos o 

l+k 
$dO+Tp 1 .cos IT cosz J 

'lz (l+Jo v 

5 0, 0) dt- (P~((P, (~4)~$+& 

'fz (!+W 

\ @e-j/ 

0 0 0 

plo =5k + 1 e2 ---- l+k' 
4 

pal = - 2 sin 0 cos Z, plo = 

poI = - 2 cos z 15 + (1 + k) sin 01 (1 $ k)-', 810 = & (1+k)2 (7 + 3tmS z)- $ 

‘12 (l+k) 
e =l+k, 1 t- k sino 
01 - 

2 
cos T sin 0 + 1 s DDE+----- 

6 cos z 
0 

Here c(t, o) and c((p. O) indicate that in the formula ((8, o), 8 has 
been given in terms of t or 9. Let us compute the first approximation 
for 5, i.e. G1. From (7.1) and (7.2). it follows that 

V+ - - 28, w; = 0, w,“, = 2 (1 + k) ~0s o 
of- 

Then for (I we have 

- ec0sss+0e(i + k)cosoE=O, 61 = - sin 0 for 0 = ‘/z (1 + k) 

The solution for (I assumes the form 

Cl = (1 - q?) / (1 + q12), q1 = [2e / (1 + k)]‘= (l+k)secstm (V‘# + Il4n) (7.3) 

If in (7.2). we substitute the value 51 for 5, then we have the first 
approximation up to all first order quantities inclusive, since R=<-cl 
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is a first order Quantity. The integral of <I may be estimated by the 
formula 

t 

c 
(7.4) 

6 

Cl (0, 0) d0 = t& (t,o) + 80 (1 + k) set T\ II - 61” (6, CO)] d0 

0 

8. Let us determine the pressure in the second approximation 

e 
2 sin2 Z 

-+ (1 + k) 
cosz 6 ~~(t,w)dt+~+~“os~sino+ ‘s+?!J!!C? 

s ! 1 
X 

cos r 
0 

‘it (l+k) 

x 

s 
51@, @ f &-- (’ + k, sin o (2cos2 r - 3) + Zcos z sino 

2 cos r 
0 

poz L= cos 22 - CGS%X Ices% + ‘i, - Bz (1 + k)-2] 

Here 3 is replaced by 51, since we limit ourselves to the second 
approximation. Moreover. expanding in series of a and B, we easily show 
that pi1 and 8,, differ from their corresponding expressions in [21 in 
the second order quantities. In what follows, the results of [21 will 
be used. From equation (3.3), we have 

e 

S,@ .= const, s,, = fl (b), SOS = 2 
s 

cos 0 
3 d6 + fz (b) 

,,z ii+k) l/26 (1 -i- k) do 

The integral is taken along the line < = con&. 

In the expressions for S,, and SO2 we replace 5 by CI; this is not 
permitted for second order approximation. Then for the density and 
radial velocity, we have 

1 Bk 

i ) 2 
Pm = * + k t32tpD2z- 2 0% L 5B3 

- -2’ 
I+k 3(1 + k)-- 

03uIl2 z 1184 
--- 

1+x: 6 (1 + W 
+ 0’ (9 + W + (1 + 1~ I2 -2 t + ~- 

4 (1 + k) 4 

+ 
12 + 3% - 5k2 ka (1 + k) (7 + Wv) 

32 12 (1 + W 

+ [& + (1 + k) sin 01 ?%?. x 
(1+k)2 
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sin2 Z ‘L&J2 iz ~ 28 
2 cos z 

sin2 z - CL2 - - 
l+k 

co9 0 - 2 (1 - 51”) [ 1 - (&)“]} 

Since the zeroth and first approximations in the dimensionless vari- 
ables for the normal and azimuthal velocities correspond to the first 
and second approximations in the physical quantities, the coefficients 

“20’ Ull’ *02’ “20’ ‘11 and “02 will not be determined. 

9. It is necessary to determine g2, since using cl in the formulas 
for poI and uoI it is not possible to compute the second approximation. 
From the equations for w20, wII and wo2, it follows that their solutions 
are 

~20 = CoSo COSb2 T [1/2 (3k -f- 2) (i -/- k) sin2 t - 2k2 co? t - 

- ‘/so (1 + k) (22k + 7)l + 01’S jl (0, o) + C1 (w) O*” + 0 (E, a) 

(9.4) 

ujll = 2 (1 + k) G1 coso 12 (1 + k)-1 cos z + sin z ~MZ] + 

+ (1 + k) sin 2w(cos z - l/d cos -1 z) + e”Sr (0, 0) + B%& (W) + 0 (8, 0) 

woz = es+, (e, 0) + e’k~, (0) 

Here 5 has been replaced by {I, and we have considered the fact that 

“20’ “11 and uo2 have order 8 as 8 -. 0, as was proved in Section 5. The 
functioIls fl, f2 and f3 are bounded and their forms axe determined by 
the coefficients p20, pI1, po2, u20, VII, uo2 and some others, while 
C,(w), C,(o) and C,(o) are determined from boundary conditions. From 
(7.2) and (7.4) follow 

vlo+ = 9 (1 + k) tup’z, 1'01 + = 25,8 sin ZtraZ (9.2) 

The first terms in formulas (9.1) represent wZo’, 
+ 

“11 and wo2 ’ The . 
equation for c2 assumes the form 
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cos T (u,,’ + w10+ + uLTol+)dj, / a0 -j- .?a (IDlo+ + EW2OD+ + owl+) acz / a0 = 0 (9.3) 

and the boundary condition is 

& = - sinw for 8 = ‘/z (1 + k) (9.4) 

Since c1 differs from c2 by terms small to the first order, we may 
replace 51 by C2 in the coefficients of the derivatives of ?j2 in equa- 
tion (9.3). The accuracy of the equation for & thus only improves, 
since in the more accurate solution, we must use & instead of cl. The 
solution is 

Here 

~5 (i+k) set T (i+~n,+aLW 
mn(‘/20 + ‘/an) (cos co)O”3 [I -+O[(& + a)2]] 

nl = 1/2 (1 + k) (5k f 4) sina z - 2k2 cos2 r - 1/3o (1 + k) (22k + 7) 
52 (1 + k) CO.+% (9.6) 

n,=2(1+k)-l~os~+2sin~tanT, n3 = cos z - ‘/, GOS -% 

The function f is determined from boundary condition (9.4). 

We may give an approximate formula for g2 accurate up to the first 
order. This accuracy is sufficient to construct second approximations. 
Expanding in a series in q2, for 8 = l/2(1 + k), we have 

(9.7) 
72 (I/% (1 f k),o) = tan (1/a o + */an) -I- ~~43 tm(1/2 m + l/4 n) In cost $ 0 (s2, EU, u2) 

This expansion has accuracy up to first order outside some neighbor- 
hood with a radius of first order about the point o = 1/2r. However, in 
this neighborhood the boundary condition differs from unity by quanti- 
ties of the second order. We shall write the solution as & = Q(Q). 
Satisfying the boundary condition up to first order quantities, we have 

c2 = ___ i - s2 + an, 4rl2” 
1 + rla2 (1 --I- q22)2 

In ‘% 
l+rla 

i- 5 ((s 4 o)2) (9.81 

where qz is given by (9.6), in which g2 is replaced by gl. Thus, c2 has 
accuracy up to first order inclusive everywhere. 

In this manner, we have completely determined the second approxima- 
tion in the physical variables. 

10. Using this method, it is possible to construct higher order 
approximations; but the number of terms in the equations increases 
rapidly, rendering the computational process complicated. 
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If the resulting solution is formally expanded in a series in E and 
u. then it passes over to the solution obtained from a formal applica- 
tion of the method of small parameters. However, the series thus ob- 
tained diverges on the surface of the cone (8 = 0), and in its neighbor- 
hood there is no uniform convergence. 

To compare the solutions obtained by these two methods, we consider 
an example with the following data: -r = 45’, a = ITo, &, = 9.4 and 
y = 1.40. 

The difference between the radial velocities computed by the two 
different methods in the second approximation constitutes 3 Per Cent at 

8 = 0.1, 14 per cent at 8 = 0.01, 23 per cent at 8 = 0.001, and the 
difference becomes 80 per cent on the surface of the cone. 

Similar solutions may be given for other supersonic flows past cones 
at angles of attack. 

11. Below we shall consider the inviscid hypersonic flow of a uni- 
form stream past a circular cone with half vertex angle T at an arbi- 
trary angle of attack a, using a spherical coordinate system r, 6, and 
o with the axis along the axis of the cone (Fig.). 

As independent variables we shall take o and y, where ~(0, 6) satis- 
fies the equation 

v,a* I a6 + w+ cosec 6 a* / ao = 0 

The equations of momentum, continuity and energy assume the form [31 

__ A - t.=+- u4+ z 0 W+ a&. 
sin 6 &i~ 

a+ au, W?+ 1 aP+ 
sin6-z 

+ a+v+ - ~ = - - ~ 
tall6 P+@+ 

all), &ln (p+w+fi+) + 2 $sin 8 = 0 (11.1) 

rp+ 
P+(T - 1) 

+ u+2 + v+2 i- w+2 = 
2 ,,:7p: 1) +$ 

a P+ () a6 --=, 
aw P+y 

W+&-= v+ sin 6 

The solution must satisfy the conditions on the shock wave and on 
the cone surface [31. 

Gonor solved system (11.1) using the method of expansion in the small 

parameter E = (y - l)/(y + l), setting 

u+ = uo + EUl, + . . .( v+ = EVO + &Q1 f . . .) 1c+ = U’o + &WI + . . . 

p+ = po + &PI + . . .) p+ = &-lpo + p1 + . . ., 6 = z + do + . . . (11.2) 
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He found the values of the coefficients with the subscript zero. How- 
ever, if one attempts to find the coefficients with subscript 1, then 
w1 has a logarithmic singularity on the conical surface. 

12. We transform system (11.1) to the form which is convenient for 
the application of the PLK method. 

Since V+ c\r O(E), from the first equation in system (11.1) follows 

coddc 6 au+/ ao = w+ + 0 (9) (12.1) 

(This relationship obtains exactly on the cone surface, since on it 

vt = 0, and near it v+ * O(6 - -r) .) We write p+ and p+ in the following 
form: 

P+ = PO f Pie + 0 V), Pi = pi (0, q; El = 0 (1) 

P+ = e-l [PO + c Pl f 0 (e2)1. 
(12.2) 

Pi = Pi (Q, $; e) = 0 (i) 

Then from the Bernoulli integral (the fourth equation in (11.1)) for 
constant entropy along the streamlines, we have 

u+2 + (-0 z)2 + $J [I + E (I+ 2lnJJ + p$ - ‘$+)I + 

+ 0 (E2) = U,” + (r 2”$ p (12.3) 
00 

The plus-sign superscript indicates quantities on the intersection 
lines of the stream surfaces y = const with the shock wave. 

We introduce a new variable instead of o 

Z= c sin 6 do 

Moreover, we introduce the notation 

f (z,*) = x0 w + &Xl (z,Q), x0 (IJJ) = urn2 + p 2(y) *) - p$ ‘/z 
1 

(12.4) 
03 

+ 
x1 (z, 4) = - 

2Po++poxo (9) c 
1 + 21n PO +E! - pl+ 

PO+ PO PO+ 1 
Then equation (12.3) becomes 

u+2+ g 2 = 
i ) f2 (29 “44 (12.5) 

We seek a solution u+ in the form 

u+ = f (z, 4) sin Y (z, $1 (12.6) 
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Then the eWration for y(z, y) has the form 

fv,’ + f,’ ml Y = f (z, a (12.7) 

The prime indicates differentiation. For the independent variables, 
we assume 

(12.8) 

We seek the unknown function in the form 

Y = Yo (9, $1 + EYl (Q, $1) + * - . 

Substituting (12.8) and (12.9) into (12.7). we have 

(12.9) 

Xoyoq’ + E (X1yo, + X,y,,') + &XIP’ tmy, + . . . = x0 + 8 (X0 zlq’+ -m + * * * (*2.1°) 

Collecting the free terms in (12. lo), we get 

YOP ’ = 1, i.e. yo= q+aW (12.11) 

To satisfy the boundary condition on the shock surface [31, we have 

Collecting terms with E and requiring that y1 be nonsingular, we get 

zlq ‘=X 1q’ tan Iq + o WI 

Then 

(I 

%a 
’ = 0, zl = 

s 
Xl,’ tan tq + a (44 1 dq, Yl = Yl (9 (12.12) 

0 

From (12.12). (12.4) and the boundedness of Xlq’ follows the estimate 

z = q i- SO {tap0 I aq) In cos [q i- a ($)I1 

From this, it is obvious that z - q < O(e In s) for q + a(yr) < 
1/2r - O(E), where O(E) > 0. As q + a(yr) approaches l/2*, the Quantity 
z increases ranidly for slight increases in q. 

Furthermore, from (12.1). (12.4), (12.6). (12.11) and (12.12), we 
have 

u. = X0 (d sin (4. + a (441 

~l=~l(z,~)sinlq+~(~)l+~o(~)~~slq+~(~)l~l(~) 

w. = X0 ($1 ~0s [q + a ($1 aq / az 

(12.13) 
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WI = Xl*’ (5 $1) sin [q + a WI + Xl cos Iq + a ($,)I aq / a2 - 

- X0 sin Iq + a WI y1 ($1 aq / 82 

From this, it is clear that ue and we differ in terms of the first 
order from the corresponding results of Gonor [31 when 

i.e. outside the vortex layer. 

Carrying out the limiting process on the cone surface, we have 

uo = x o($o). Ul = -t Xl b,$o), w. = 0, Wl = Xl’ (6 $0) (12.14) 

where v = y,, for the cone surface. 

These quantities agree with the results on the cone surface in 151. 

13. Instead of 6 we introduce the quantity 9 = (6 - -r)/~. From the 
third equation (11.1) we have 

(13.1) 

From this, using (12.13), we easily see that w 
has order O(e’) . 

has order O(E), if q~ 
11 This agrees with the results of 2 (for small angles 

of attack). There, when w+ >O(E), i.e. when 9 >O(e2), a,, and we given 
by the solution of Gonor are correct; consequently, in this region, the 
pressure pO given by formula (12) of [31 is also correct. But then, all 
the assumptions of [51 are satisfied, and consequently, the pressure p,, 

given by Gonor holds everywhere. It is easily shown that 9 defined by 
(13) in [31 is accurate up to ~9 outside the layer ‘p = O(E~). Thus, the 
zeroth approximation of Gonor holds everywhere outside the layer 
9 = O(Z). 

Then we may determine the function yl(yl) from the boundary condition 
for al on the shock surface. 

If we now substitute in (13.1) the zeroth approximation for all 
quantities and substitute we + WI for ID from (12.13). we then obtain 
the zeroth approximation for 9, valid everywhere. The formulas thus ob- 
tained for 9 will determine the zeroth approximation of the entropy 
field in the variables 9 and o everywhere in the region between the 
shock and cone surfaces. 

14. We may determine the behavior of the stream lines near the cone 
surface. From the continuity equation, it follows that for 



Hypersonic flow past a circular cone 1435 

cp 7.z 0 (ES), 00 = - zu, ($,o) ‘PO -I- 0 (q$ (uo (l#,@) = 20 (11) f 0 (d) 

From (12.13). considering Section 13 for q + cc(y) = 1/2x - C(8), i.e. 
in the vortex layer, we have 

w+ = - E [kXo W ~0 (a, 7)1-l P,,: (co, z) f o (E) (k = siu t) 

Then the streamlines near the cone surface in the variables 9 and o 
are 

C-3 ( exp XI’,($) k f u,-l do) = 1 

at 

(14.1) 

where q and 01 are the points belonging to the lines y in the layer 

9 = O(8 g ). From (14. l), it follows that all streamlines converge at the 
point qJ = 0, 0 = 1/2r, which agrees with the qualitative analysis of 
A. Ferri. 

15. There is no difficulty in generalizing to arbitrary conical 
bodies. Outside the vortex layer. the solution passes to that of Gonor 
r41 . In the layer go = O(E~), uu is expressed in a similar manner as for 
a circular cone, in the formula for WI the quantity k must be replaced 

by A2. and in the formula for vu there is an additional factor A,, where 
A1 and A, are the Lam& coefficients computed on the surface of a unit 
sphere f41, It is also possible to generalize the above to real gases, 
if we take as the small parameter the ratio of the densities before and 
after the shock. 

After the present paper was concluded, the author became aware of 
[71 , in which the problem was also solved by the method of PLK; however, 
the authors of [71 used variables different from those used in this 

paper. and these variables do not permit them to obtain a single solu- 
tion up to the cone surface, as was found here. 

The author thank8 B.M. Bulskh for posing 
the results. 
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