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In [1,2l the problem of hypersonic flow past a cone at an angle of
attack was solved by expanding the solution in powers of € = (y - 1)/

(y +1) and o = sin o/sin T, where y is the ratio of specific heats, T
is the half vertex angle of the cone and o is the angle of attack; the
second approximation was obtained. However, the solution so obtained
possesses a logarithmic singularity on the surface of the cone, which
indicates the invalidity of the solution near this surface. The correc-
tion of the first order approximation in the "vorticity layer" was given
by Cheng [1].

Below we shall present a solution of the problem by successive
approximations, which permits a uniform approximation to the exact solu-
tion in the entire region between the shock surface and the cone sur-
face, including the "vorticity layer". The solution obtained is accurate
up to the second order. It is compared with the results of [1,2).

The inviscid hypersonic flow past conical bodies was studied by Gonor

[3,4]. who sought solutions as power series in € = (y — 1)/(y + 1) and
obtained the zeroth order approximation.

However, it is possible to show that the first approximation found
by the method of small parameters has a logarithmic singularity on the
cone surface. This indicates that this method is inapplicable near the
cone surface (see also [5]).

Below, we shall apply the method of Poincaré-Lighthill-Kuo (PLK) to
this problem. For a circular cone at an arbitrary angle of attack, we
obtain the zeroth order approximation, valid everywhere between the
shock surface and the cone surface. It will be shown that outside the
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Hypersonic flow past a circular cone 1423

vorticity layer, the solution passes over to the solution of Gonor.

1. We consider the uniform flow of a gas past a circular cone of
half vertex angle T at an arbitrary angle of attack «; we choose
spherical coordinates r, O, and o with the axis coinciding with that of
the cone (Fig.).

We follow the notation of [1]. We denote by
u,, v, and w, the components of the velocity
vector in the r, 4, and ® directions respec-
tively, and by p, and p, the pressure and den-
sity respectively.

We now introduce the dimensionless variables

(1.1)
o=t o = __&.__, v
u gu, sin T U, sin a
£py Ps sin ¢ —sin v
P= o' P Topguytsinit’ ° = esint

Then the equations of momentum, continuity, and energy become [i

w a

9 4 v Y — gin2 2 .2 2,2
Pvéa, 01—+606m]u sin? T [e? 2 + o%w?]

P v [ 9 . w k2 u
=i "W’ I(1+ee)am+7]”
a w 8 e [d
Iv 2 2 = —_5 |9 g1 1.2
GP[”ae T° T30 am+u}w T ¢b [am+cpvw] (1.2)

2 @+ €0) pu + 7 g’e_[(wee) po] + o %(pw)=o
e ()
Here
I =cos® = [1—sin? v (1 + 6)2]"s
On the cone surface, we have the kinematic boundary condition
v=0 for 6 =0

On the shock surface & = 9+(m), the conservation of mass, momentum
and energy and the continuity of the tangential velocity component have

the following form [1]:
I {py — Io sin ® 4+ (1 -} €0%) cosa] = 0O [pw — & cos w]

{12 4 &202) (p — ke) = [I (1 + &6%) cosa — I%0.sin @ -+ 0£0 cos 0] — ep [[v — o Bw]?
[72 + e20](p/o—k) (1 -+ &) + €2 [Ty — 08 w]?* =

= [I (1 4+ e0¥) cosa — I? g sin © + 0e0 cos ©)?



1424 Ia.G. Sapunkov

Io (w— cos @) + €0 [ev — Josin ® 4 (1 4 £0%) cos a] = O

u— fcosa=sin21t (1 + e6%) osinw (1.3)
Here
= T+ 1 = const 0, = 29" (@) 0 —_ %"
T(y— )M 2sin? v ! @ do ' CTF eo’

The quantity k is considered bounded. The Bernoulli integral assumes
the form

(p/p—k (1 + &) sin®> v 4+ w? + sin? 7 (€2 »? + o%uw?) = 1 (1.4)

2. Cheng [l] sought the solution in the form of a power series in €
and o; for example, the pressure p is written as

P= Poo = P10t T P00+ P20’ + P10 + poeo®- . . ., pij = p;; (8, ) 2.1)
and the function 6+(w), defining the position of the shock wave, as
07 (w) = 0y -+ 059 &8 + 0310 -+ 05982 + 0,80 4 0g00% . . ., 0;; = eij(w;

When the solution is given in this form, 1n © will appear in the
third approximation in the expression for S = pp"Y, so that the third
order solution breaks down at the cone surface (8 = 0), indicating that
expansion (2.1) is not valid near the cone surface.

Cheng made a correction in the first order approximation; for S it
1s [a]

S=t+k+telk+20+8n@-+k]+20costd— L2 (1452 (2.2)
(Lo = §°° (K SEC T qan (1), - 1/, 1)
From (2.2), it follows that the solution depends on € and o in such

a way that the power series in € and 0 obtained do not converge uni-
formly in the region between the shock and cone surfaces.

3. For the normal and azimuthal velocity components, we introduce
the approximate quantities v+ and w+, such that

v— <007, w—w<0®" as 050 (3.1)

We introduce a function [, satisfying the equation

vFcost ol )00+ owdl/ow = 0 (3.2)
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and boundary conditions
= —sinw for 6 =1,(14 k)

(The meaning of the boundary condition will become clear later.) The be-
havior of a line { = const is that of a streamline. It also has a source
at the point 6 = 0, o = 1/2m, and the cone surface is the line { = 1,
which we assume to be independent of © and [; the equation for S = pp‘Y
we shall write in the form

9s | wotcost—wto (14 e0)1 S oL _

a6 + (1 + et) vot Tcost ot o0 (3.3)

4. Let us consider the system of equations, consisting of the second,
third and fourth equations of (1.2), the Bernoulli integral (1.4) and
equation (3.3) with boundary conditions (1.3). S may be written as

S = Sgo -+ &So1F 08gy + €859 + €08y 4 0%+ . .., Sy =9y (8, 8;8,0) =0 (1)
We introduce the expansion
Z = Zyy + Zsoe + 735 & Zog® 4 Z1€0 T Zgp6® + . ., 2= 2;(8, @ &,0) = 0(1) (41)

in which form we shall assume the solution p, p, u, v, v and also the
function 6+(m) defining the shock position.

5. Integrating the continuity equation, and considering the bounded-
ness of the desired quantities in the region between the cone surface
and the shock surface, we see that v = O(8) as © ~ 0. Then this property

must also be possessed by vije

We shall assume that Bg/Bm exists everywhere and is bounded outside
some neighborhood of the point (6 = 0, © = 1/2w). In what follows, the
first and second approximations in the examples satisfy these assump-
tions.

We introduce the function §n+1, satisfying the equation

n P 3§n+1 s P acn—|—1
cos T ( Z 7’1'; & 6]) 26 T 6( Z uJ &t 07) 0 = 0 (5.1)
i+j=0 itj=n
and boundary condition
fpp1=—sine ford =11+ k)

It will be shown below that w00+ = 0. We estimate the difference
R =10 -, it satisfies the equation
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R wt oR
- 0 — =
00 + vtcos T Jw
aC n41 n n
__O© n+1 . oAy 0. + i 3\
v o (7 2 e 3 i o) (o 3 vt
idj=1 i+j=0 i4j=0

and the boundary condition
=0 for0 =1,01-+k

Writing the characteristic equation and integrating it, we have

90 [(e + 0)"**] Foni 4

R —=
0 cos T o

2 (1+k)

The integral is taken along the lines Q = const. It will be shown
below that Of;/%w and 9J,/% have order 8°C as & - 0 outside some
neighborhood of the singular point; this is also obvious for higher
approximations. Then for R, we have everywhere the estimate
R =o0[(e + o)"+1](R =0 for 8 = 0).

From this, it follows that to get a solution up to the (n t+ 1)st
order quantities, it suffices to know §n+1, since S00 = const and does
not depend on .

6. Substituting the expansion of type (4.1) into the system of equa-
tions and the boundary conditions indicated in Section 4, and collect-
ing terms with the same powers in € and o, we obtain equations for the
coefficlents of the desired quantities.

Since v = 0(8) as 8 -~ 0, and the derivative 9(/%w and I are bounded,
then considering (3.1), we have the following estimate:

85 /00 = 0 (897 (g =13 (6.1)

From (6.1) it follows that the solution to equation (3.3) does not
have a logarithmic singularity. The equations for the remaining quanti-
ties are such that if no logarithmic singularities occur in the already
known approximations, then they will not occur in the solutions of these
equations.

7. We give the values of the coefficients in the zeroth approxima-
tion for the dimensionless quantities
Poo = 1, poo = (1 + k)1, Ugg = COS T (7.1)

vop = — 20,  wgy = (20)"2 (1 + k) cosw, O =y (1 + k)
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up = — /3 (1 + k) sin Ttan 7, ug = —  sin®v
v30 =0 (1 + k) wan® T — 02 an?v — 1) — 4/;0% (1 + k)-*
(7.2)

/s (1 -+ k) sin © 4cosre§

2¢0s T )
14+ k 3costT 1+ k

1+ &

001=2<Sin'rum1:+

c(tm)dt—l—(

0
\
0
wmzcosm{ 1+k)+<1+k /'[2(1+k %(1+k)—£¥m2t]+

( [___nmr—_g_(l-{—k) ( 26 )5/’1+k}——sec17( 26 )""x

11 % 2% T+ %
+ s g 9 Yy (1K) ac 1 + %
sin® v cO0S T COsS ®
do
[ €OS T COS® -}~ os1:+1—|—k> % + cosr1

0

. . ' . _
Woy = ( )51n2m+< 20 )/:{ism%) sin? T —cosm(s(;n T+

3cos T 1+ k 4 cosT 0s T
1) e 11, (1+K)
)[__ g Sc<t,w)dz——wc(¢,m>)d¢ SR S cde]l
2 1+ & 1
]
62 . B0 1
Plozé%”‘ﬂ_—k’ Pop = — 2sin ® cos T, 910=m+—
.2
b — — 205 T 1L+ (14 Bsin 0] L+ 02 By = o (14K)2 (7 + 3w 0— -
5
1+ & g 5 1/, (1+k) 14k si
6 — . . sin? T cos 1:] S do -+ k sinw
o 2 COSTSlnm+[cosr+1+k ¢ do+ 6 cosT

0
Here {(t, @) and [(p, @) indicate that in the formula ((8, ), © has
been given in terms of t or ¢. Let us compute the first approximation
for {, i.e. ;. From (7.1) and (7.2), it follows that

vy = — 26, wg =0, wi =21+ kcoso

Then for {; we have

- 00y ol . . .
Ocosr.%—koe(i—{—k)cosmaj_o, {y=—sine for 06 =141+ k)

The solution for {; assumes the form

= —md /(4?0 = [20/ (1 + K)]CTRICT 00 (1o 4 yn)  (7.3)

If in (7.2), we substitute the value _(,1 for g, then we have the first
approximation up to all first order quantities inclusive, since R=§—§1
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is a first order quantity. The integral of §1 may be estimated by the
formula
?
£, (0, ©) db = Ly (t,o) + eo (1 + k) sec TS 11— L2 (8, w)] dd (1.4)
0
8. Let us determine the pressure in the second approximation

i~

(8.4)
52008
16 +24 F5

3 2 K A4+ K2 . 8k \2_ (20)°
Pao =g (1 192 — o b E S’ — ()

Ot 116t

62 2
t O T — e T
4 (1 4 k) si 9\ 4 Ve (1+KY 8
1 sin @ °f cos T :
= ' - = d
P 15 coS T [(1 4k ) 1] 1+ kP x ":S Li(g, w)de +
§

8
4 2 sin? T 9S§1 (t,m)dz—}—ngz__costsin(o»{r(ﬁcosr+2smzr)><
0

'(1—}.—k)cos17 4k 1+ k cos T
e (1K)
X S Ly (B,0) dO—

4]
Poz = €08 2T — cos®o [eos®r + 1/, — 82 (1 + k)%

(1 + B sinow

o {2cos? T — 3} 4 2cos T sinw
€0s

Here [ is replaced by Ql, since we limit ourselves to the second
approximation. Moreover, expanding in series of & and 0, we easily show
that Py and 801 differ from their corresponding expressions in {2] in
the second order quantities. In what follows, the results of [2] will
be used. From equation (3.3), we have

Sao = const, Sy = f (), Sep =2 G050 g4 £, (D)
vy VAT B do

The integral is taken along the lime { = conmst.

In the expressions for S;, and S;, we replace [ by (;; this is not
permitted for second order approximation. Then for the density and
radial velocity, we have

i o e Bk \®_ 0% 588
P2°”1+k{e"“1 2<1+k> 2 TIATFR
PSumn2T 1104 02 (9 45k , (1K),
— - + + n? 7+
Tk 60U+ F(dLR p
LM =5 (4Dt B
32 13 (1+1¢)2}
_ sino A(A 4R/ 20 VT, sinft[,  (20)2
p”“(1+k)cosr{ 15 [<1+k) ﬂ" 7 [1 1—}—k}+

+%[<T%)2 cos? T 1]} + G+ (14 B sin o] (%’f_;)—2 8
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x(7+3k+ 262 )+ & coszr-{—%]-k

T 4k
(1 4+ k)cost [(1 + k)2

2 1+ k
. . 1 k2 {062
+200s151nm[_4.—(11——k)2]

(83— k) G2cos?t | 4L costr __cos? 2 L 0 \2
= C g T e — g [ et g () |
g ocost_ ksinlv  2(1—THry 20 '/z]
1+% (14 k? (1 + k)? [ (i-i-k)

— s B4R 2 (AR
ugﬁ_smtunr{z 7 tan” T 5 92]

A+ Rsin?r] &, AE+2 Lo 1 y
Uy = 5 eos T }:cost(l-{—kcos 1:+_:.3. smzr)—{—écosxsmco:[
LSBT [ooao ea 20 o o ea[g_ [ 20 \%
;02._200”{smr L ey et e—2(t §1)[1 (1m+k) ]}

Since the zeroth and first approximations in the dimensionless vari-
ables for the normal and azimuthal velocities correspond to the first
and second approximations in the physical quantities, the coefficients
Voger Viis Yg20 ¥apr Wiy and LY will not be determined.

8. It is necessary to determine Qz, since using QI in the formulas
for py,y and ug; it is not possible to compute the second approximation.
From the equations for Pogs P33 and wge, it follows that their solutions
are

wep = c0sw cos 2t [Y/y 3k -+ 2) (1 -+ k) sin® v — 2% cos® T — 9.9
— Yy (1 4+ &) 22k + D] + 67§, (8, 0©) + €, (0) 67+ O (g, 0)

wy =21+ k) Lyeoso [2 (1 4 k)tcos T - sin T wntT] +
+ (1 + k) sin 2w(cos T — Y/, cos -1 1) + 875 (8, w) 4+ 62C, (0) + O (&, 0)

weg = 074 (0, ©) + 07:C4 (@)

Here [ has been replaced by [;, and we have considered the fact that
Yaoe Y11 and vy have order 6 as © - 0, as was proved in Section 5. The
functions f,, f, and f; are bounded and their forms are determined by
the coefficients py,, P11, Pggs Vggr Vi1s Voo 8nd some others, while
Cl(m). Cz(m) and Cy(w) are determined from boundary conditions. From
(7.2) and (7.4) follow

vigt =0 (1 + k) tantT, Zort = 2,0 SN T tan T (9.2)

The first terms in formulas (9.1) represent w2°+, w11+ and ”02+' The
equation for [, assumes the form
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C0S T (vt + &0yt + Orm™)IG, / 80 + g0 (wiot -+ ewnt - ownt) e/ 0w = 0 (9.3)

and the boundary condition is
{p = —sino for® =1/, -} k) (9.4)

Since {, differs from [, by terms small to the first order, we may
replace {; by [, in the coefficients of the derivatives of {, in equa-
tion (9.3). The accuracy of the equation for §2 thus only improves,
since in the more accurate solution, we must use [, instead of [;. The
solution is

fGam) =0 (9.5)
Here
M= (o) T o 3am) (c0s 0)°™ (1 +O[(e + o))
#y == Yy (1 + k) (5k + 4) sin® v — 2% cos® v — Yy (1 + k) (22k 4 7) (9.6)
52 (1 + k) cos®t
nyg=2{(1-+k1cost+ 2sin 7 tan¥, ng = co0s T — 1/, cos~17

The function f is determined from boundary condition (9.4).

We may give an approximate formula for §2 accurate up to the first
order. This accuracy is sufficient to construct second approximations.
Expanding in a series in n,, for 8 = 1/2(1 + k), we have

(9.7

Ny /(1 + k),0) =tan(Yyo + Yem) + onstan (0 + Yyn) Incose + O (€% g0, 0%)

This expansion has accuracy up to first order outside some neighbor-
hood with a radius of first order about the point ® = 1/2w, However, in
this neighborhood the boundary condition differs from unity by quanti-
ties of the second order. We shall write the solution as Qz = @(ng).
Satisfying the boundary condition up to first order quantities, we have

_i—n 4ng? 2N 4 2
o= 0 b ang i 20 (e o) ©.8)

where 1, is given by (9.6), in which (, is replaced by y- Thus, {, has
accuracy up to first order inclusive everywhere.

In this manner, we have completely determined the second approxima-
tion in the physical variables.

10. Using this method, it is possible to construct higher order
approximations; but the number of terms in the equations increases
rapidly, rendering the computational process complicated.
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If the resulting solution 1s formally expanded in a series in & and
o, then it passes over to the solution obtained from a formal applica-
tion of the method of small parameters. However, the series thus ob-
tained diverges on the surface of the cone (8 = 0), and in its neighbor-
hood there is no uniform convergence.

To compare the solutions obtained by these two methods, we consider
an example with the following data: T = 45°, « = 17°, M, = 9.4 and
Yy = 1.40.

The difference between the radial velocities computed by the two
different methods in the second approximation constitutes 8 per cent at
8 = 0.1, 14 per cent at © = 0.01, 23 per cent at 8 = 0.001, and the
difference becomes 80 per cent on the surface of the cone.

Similar solutions may be given for other supersonic flows past cones
at angles of attack.

11. Below we shall consider the inviscid hypersonic flow of a uni-
form stream past a circular cone with half vertex angle T at an arbi-
trary angle of attack «, using a spherical coordinate system r, O, and
@ with the axis along the axis of the cone (Fig.).

As independent variables we shall take © and y, where y(@, ¥) satis-
fies the equation

v, 0% [ 00 + wy cosec @ 0P [/ 00 = 0

The equations of momentum, continuity and energy assume the form [3]

w, Ouy a9 -0
sin ¢ do AT
©, O, . w42+=_ 1 dp, 0 Uy . \
S0 d 9o + uivy ot 510, OV 5;ln (psw;B,) + 2 Esm =0 (11.1)
TP+ + ul? + o +w? TPeo + oo
Pe(r— 1) 2 Po¥—1) 2
B P _p, w+ﬂ=v+sinﬁ
oo pyY [0}

The solution must satisfy the conditions on the shock wave and on
the cone surface [3].

Gonor solved system (11.1) using the method of expansion in the small

parameter € = (y — 1)/(y + 1), setting

up = uy+ 8uy, + . .., vp =80+ Wy .. W =Wy + 8wy + .. .

Pr=Potepi+ - pr=tlpgtpr+ .., =1+ ... (11.2)
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He found the values of the coefficients with the subscript zero. How-
ever, if one attempts to find the coefficients with subscript 1, then
wv; has a logarithmic singularity on the conical surface.

12. Ve transform system (11.1) to the form which is convenient for
the application of the PLK method.

Since v, ~ O(g), from the first equation in system (11.1) follows
cosec O du,/ 80 = w, -+ O (&?) (12.1)

(This relationship obtains exactly on the cone surface, since on it
vy = 0, and near it v, ~ O(% —~ 7).) We write p; and p; in the following
form:

Pr=DpoF P+ O(d), p;=p; (0,9 e =0(1)
pr=2e1[pg+ep + OEH], p;=1p;(,¥P;e)=0(1)

Then from the Bernoulli integral (the fourth equation in (11.1)) for
constant entropy along the streamlines, we have

(12.2)

au 2 p+ p p1+ Pl+
u2+( 9 +)+_L[1+8<1+21n_i+__—_>:]+
* N ow pot. ot Pot pot
2YP,

+ 0 () = u? + =1

(12.3)

The plus-sign superscript indicates quantities on the intersection
lines of the stream surfaces ¥ = const with the shock wave.

We introduce a new variable instead of ®
«@
7= g sin ¢ dw
oF

Moreover, we introduce the notation

2 Y2
f(z,%) = X, W)+ X, (z,¢), X, (b)) = [uooz +_~E’E‘;____£9:,} (12.4)
P (Y— 1) Py
X (g ) = — — Po"[4 4 91 Po Pt prt
L& ¥) 2p0T+ X,y (§) [ + 2l P0++ Po Po+]

Then equation (12.3) becomes
2
wl+ (32) = £ () (12.5)
0z

We seek a solution u, in the form

up = (z, %) siny (z, §) (12.6)
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Then the equation for y(z, y) has the form

fy, -+ f, wny = f(z,%) (12.7

The prime indicates differentiation. For the independent variables,
we assume

z=gqg+en(g,P+...,v=19 (12.8)

We seek the unknown function in the form

¥y=1v (o) + ey (g, ) + . .. (12.9)
Substituting (12.8) and (12.9) into (12.7), we have

XoYoq + 8 (X1Ypy + Xoyyo) + X Jtanyy + . . . = Xo + & (Xo 2,/ + X1) + . .. (12.10)
Collecting the free terms in (12.10), we get
Yog =1 l.e.yo= g+ a@ (12.41)
To satisfy the boundary condition on the shock surface [3], we have

+
a}) = w 20
wyt

Collecting terms with € and requiring that ¥, be nonsingular, we get
Zlq' = qul wn [g -+ a ()]
Then

q
v =0 1z =&X1q' walg +aWldg, yi= v (B (12.12)
0

From (12.12), (12.4) and the boundedness of qu' follows the estimate

z = q + €0 {(dpy / 9g) In cos [q 4 a (P)]}

From this, it is obvious that z — ¢ <X 0(e 1n €) for g + a(y) <<
1/2w — 0(e), where 0(e) > 0. As q + a(y) approaches 1/2mw, the quantity
z increases rapidly for slight increases in gq.

Furthermore, from (12.1), (12.4), (12.6), (12.11) and (12.12), we
have

(12.13;
uy = X, (@) sin [g + a ()]

uy = X, (z,9) sin [g + a (P)} + X, (P) cos [g + a (P)] y, ()
wy = Xo (P) cos [¢ + a ()] dq / 0z
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wy = X, (z,%) sin [¢g 4+ a ()] + X, cos [¢q + a (P)] g / 9z —
— Xosin [¢g +a @]y, () g/ 0z

From this, it is clear that u, and v, differ in terms of the first
order from the corresponding results of Gonor [3] when

¢+a@) <Yyn— 0 (0
i.e. outside the vortex layer.

Carrying out the limiting process on the cone surface, we have
up = X oo)y w1 = -+ Xy (z,%g), wo =0, w = X (2,9 (12.14)
where y = y, for the cone surface.
These quantities agree with the results on the come surface in [5].

13. Instead of O we introduce the quantity ¢ = (¢ — T)/e. From the
third equation (11.1) we have

¢ pifwteyt ¢ u
(p :g P %0 oxp (_2 S 4+ gin ﬁdm> / ap (13.4)
o Py o W,

From this, using (12.13), we easily see that w, has order O(e), 1if ¢
has order 0(52). This agrees with the results of fz] (for small angles
of attack). There, when w; > O(e), i.e. when @ 2>0(&2), u, and v, given
by the solution of Gonor are correct; consequently, in this region, the
pressure p, given by formula (12) of [3] 1s also correct. But then, all
the assumptions of [5] are satisfied, and consequently, the pressure Py
given by Gonor holds everywhere. It is easily shown that ¢ defined by
(13) in [3] is accurate up to €p outside the layer ¢ = 0(52)_ Thus, the
zeroth gpproximation of Gonor holds everywhere outside the layer
@ = O(e”).

Then we may determine the function ¥y1(y) from the boundary condition
for u; on the shock surface.

If we now substitute in (13.1) the zeroth approximation for all
quantities and substitute w, + €v; for w from (12.13), we then obtain
the zeroth approximation for ¢, valid everywhere. The formulas thus ob-
tained for ¢ will determine the zeroth approximation of the entropy
field in the variables ¢ and ® everywhere in the region between the
shock and cone surfaces.

14. We may determine the behavior of the stream lines near the cone
surface. From the continuity equation, it follows that for
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¢ = 0 (%), vy= - 2u,,0)p + O () (o (0, 0) = 2, (§) + O ()

From (12,13), considering Section 13 for g + a(y) = 1/2w — O(&), i.e.
in the vortex layer, we have

wy = — & [kXy (§) po (@, DI Py, (0, T) + 0 (e) (k = sin 1)

Then the streamlines near the cone surface in the variables ¢ and o
are

o
(LP_) exp (2X,, W) k S wil da)) —1 (14.1)
P A
where ¢£ and ©; are the points belonging to the lines ¢ in the layer
= 0(e“). From (14.1), it follows that all streamlines converge at the
point @ =0, w= 1/2m, which agrees with the qualitative analysis of
A, Perri.

15. There is no difficulty in generalizing to arbitrary conieal
bodies. Outside the vortex layer, the solution passes to that of Gonor
[4]. In the layer ¢ = 0(52), u, 1s expressed in a similar manner as for
a circular cone, in the formula for vy the quantity k must be replaced
by Az- and in the formula for v, there is an additional factor Al, where
A, and A, are the Lamé coefficients computed on the surface of & unit
sphere [4] It is also possible to generalize the above to real gases,
if we take as the small parameter the ratio of the demsities before and
after the shock.

After the present paper was concluded, the author became aware of
[7}, in which the problem was also solved by the method of PLK; however,
the authors of [7] ased variables different from those used in this
paper, and these variables do not permit them to obtain a single solu-
tion up to the cone surface, as was found here.

The author thanks B.M. Bulakh for posing the problem and discussing
the results.
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